Environmental **Product Declaration**

TURKEY EPD®

ENVIRONMENTAL PRODUCT DECLARATIONS

In accordance with ISO 14025 and EN 15804 for:

Aluminium Composite Panels

ALBOND ALÜMİNYUM SANAYİ VE TİCARET A.Ş.

Programme:

EPD Turkey, a fully aligned regional programme

www.epdturkey.org

EPD Turkey:

Programme operator:

SÜRATAM – Turkish Centre for Sustainable Production Research & Design Nef 09 B Blok

No:7/15 34415 Kağıthane/Istanbul, TURKEY

EPD registration

Publication date:

number:

ECO Platform registration number:

Validity date: Geographical

scope:

2018-11-08

S-P-01261

ECO-00000772

2023-11-07 Global

The International EPD® System www.environdec.com

EPD International AB

General information

Information about the organization

Owner of the EPD: ALBOND ALÜMİNYUM SANAYİ VE TİCARET ANONİM ŞİRKETİ

Contact person: Esin Özgen GEZERSOY, Quality Assurance Chief

Phone: +90 (282) 661 10 10 Fax: +90 (282) 661 10 11

E-mail: esin.ozgen@albond.com.tr

Adress: Ayazağa Mah. Mimar Sinan Sk. D NO: 21 D İÇ KAPI NO: 15 SARIYER / İSTANBUL,

TURKEY

Name and location of production site: Çorlu, Tekirdağ / Turkey

About the company

From its establishment in 2002 until 2004, Albond operated as an aluminium composite panels distributor. In May 2005, Albond commenced production of PE class composite panels with the instalment of its assembly line with an annual production capacity of 1,750,000 m². Thanks to its quality-based approach, Albond became a leading exporter company and grew rapidly.

Albond continues production successfully within its new factory build in 2010 which has a 30,000 m² enclosed area in Çorlu, Tekirdağ. With the addition of the new factory, Albond increased its production capacity to 7,500,000 m². With 4 composite panel assembly lines within its premises, Albond secured its position as a sector leader in producing A2, FR, and PE fire class composite panels.

With the investment for its 4th assembly line, Albond became the first company in Turkey to operate 2-meter-wide production capacity. In addition, Albond introduced a state-of-the-art aluminium bobbin painting line with a capacity of 20,000 tonnes per year. In addition to establishing its slitting and cutting-to-length lines, with the cooperation of world's biggest paint producers, Albond established its paint mixing unit within its premises and completed its integrated production facility investments.

Albond has received 5 awards from Istanbul Exporters Association for its exports. Albond exports 45% of its yearly production, mainly to European countries such as Spain, England, Italy, France, Germany, Poland and Benelux which composes 70% of all exports. Albond is the biggest aluminium composite panels exporter in Turkey. Albond became the aluminium composite panels producer company with the most increase in exports and received the first-place prize in this category from Istanbul Materials and Minerals Association. From its very beginning until today, Albond kept progressing and year by year, it achieves better ranks among Turkey's biggest industrial enterprises list (ISO 500).

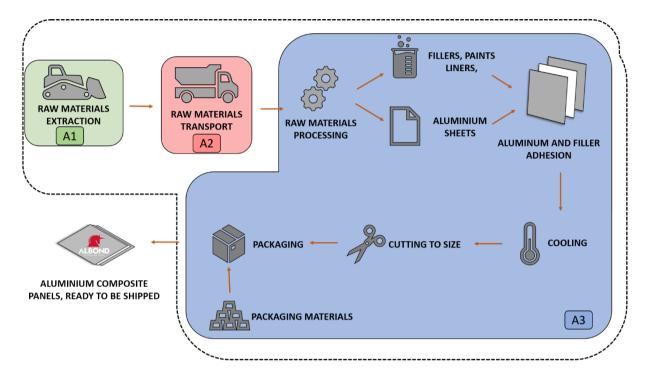
Product information

Product name: Aluminium Composite Panel

Product identification: Albond A2, Albond FR, Albond PE Aluminium composite panels.

<u>Product description:</u> The products referred are aluminium composite panels composed with the integration of two aluminium sheets with a mineral or polyethylene filler amongst them. Aluminium composite panels are mostly used as cladding material for building interior or exteriors. They can also be used within the advertising sector and for decoration. Aluminium composite panels can have different fire classes according to their filler material properties.

<u>UN CPC code:</u> 41534, Plates, sheets and strip, of aluminium, of a thickness exceeding 0.2 mm <u>Geographical scope:</u> Turkey


LCA information

<u>Functional unit / declared unit:</u> 1 m² <u>Reference service life:</u> 20 years Time representativeness: 2017

<u>Database(s)</u> and <u>LCA</u> software used: TLCID (Turkish Lifecycle Inventory Database), Ecoinvent 3.4,

SimaPro

System diagram:

<u>Description of system boundaries:</u> This is a cradle to gate EPD. In this study, the system boundary involves raw materials (A1), transport (A2) and manufacturing (A3). Raw materials stage includes extraction and pre-treatment processes before production. Transport includes transport of raw materials needed for the production to the production facility in Çorlu. Manufacturing stage includes electricity, natural gas and diesel use during the production processes. It also includes packaging materials.

<u>Excluded lifecycle stages</u>: The life cycle stages A4, A5, B1-7 and C1-3 was excluded from the LCA study.

More information: Life cycle assessment calculations required for this EPD were done using SimaPro, a life cycle assessment program. Energy calculations were obtained using Cumulative Energy Demand v 1.10, which is present in SimaPro's latest version. Environmental Impacts were calculated using CML-IA baseline v4.2 and water scarcity potential was calculated using AWARE (Available Water Remaining) method. Global Warming Potential was calculated using IPCC GWP 100a method. Albond produces painted aluminium panels and aluminium composite panels. This EPD is relevant for Albond Aluminium Composite Panels with fire class A2, FR and PE. Mass allocation was made between different fire classes based on the production amounts provided by Albond. No cut-off rule was applied within the LCA study underlying this EPD.

Fire Classes:

Fire Class	Standard
A2 (A2 s1 d0)	EN 13501-1 and EN 1716
FR (B s1 d0)	EN 13501-1
PE (D s2 d0)	EN 13501-1

Technical Specifications:

Specification	Measure
Yield Strength (kg/mm²)	4.1
Tensile Strength (kg/mm²)	4,8
Elongation (I0=5,65 A0 ¹² - %)	15
Bending Strength (MPa)	122
Bending Elasticity Modulus (MPa)	10834
Thermal Resistance (m²K/W) (m²K/W)	0,0103
Deviation Temperature (° C)	115
Heat Transition Coefficient (Wm²/K)	5,54
Linear Thermal Expansion (mm/m/°C)	0,024
Temperature Resistance (° C)	-50 / 80
Sound Transmission Loss (dB)	25
Rigidity (kN m²/m) (4mm)	0.240
Section Modulus (cm³/m) (4mm)	1.75
Rigidity (kN m²/m) (3mm)	0.125
Section Modulus (cm³/m) (3mm)	1.25

Content declaration

Product

Materials	Albond A2 Composite Panel	Albond FR Composite Panel	Albond PE Composite Panel
Aluminium Sheet, % of total mass	25-30%	29-34%	27-43%
Mineral Filler, % of total mass	60-65%	45-48%	-
Adhesive, % of total mass	2%	3%	5-7%
Polyethylene Filler, % of total mass	7%	18-19%	50-65%
Coating, % of total mass	1%	1%	1%
Total, kg/m ²	7.8-8.3	6.8-7.3	4.6-5.8

No substances included in the Candidate List of Substances of Very High Concern for authorization under the REACH regulations are present in Albond's Aluminium Composite Panels, either above the threshold for registration with the European Chemicals Agency or above 0.1 % (wt/wt).

Packaging

<u>Distribution packaging:</u> Pallet, plastic fleeces, cardboard bracing, corrugated board <u>Consumer packaging:</u> Protective film

After use, packaging materials can be re-used or recycled. Wooden pallets, plastic and paper materials can be collected separately and directed to the recycling circuit.

Environmental performance for A2 Composite Panels

Potential Environmental Impact						
PARAMETER		UNIT	A 1	A2	А3	TOTAL A1-A3
Global warming potential	Fossil	kg CO ₂ eq.	51.1E+0	1.3E+0	2.4E+0	54.8E+0
(GWP)	Biogenic	kg CO ₂ eq.	549.8E-3	11.0E-3	67.8E-3	628.6E-3
	Land use and land transformation	kg CO ₂ eq.	124.8E-3	513.5E-6	744.1E-6	126.1E-3
	TOTAL	kg CO ₂ eq.	51.8E+0	1.3E+0	2.5E+0	55.6E+0
Acidification p	ootential (AP)	kg SO ₂ eq.	312.4E-3	16.4E-3	9.5E-3	338.3E-3
Ozone Depleti (ODP)	on Potential	kg CFC 11 eq.	2.4E-6	221.2E-9	129.7E-9	2.7E-6
Eutrophication	Eutrophication potential (EP)		73.5E-3	2.0E-3	4.0E-3	79.5E-3
	Formation potential of tropospheric ozone (POCP)		7.7E-3	-458.1E-6	128.5E-6	7.3E-3
Abiotic deplet Elements	ion potential –	kg Sb eq.	327.3E-6	1.1E-6	25.0E-6	353.4E-6
Abiotic deplet Fossil resourc	ion potential – ces	MJ, net calorific value	441.9E+0	18.2E+0	35.7E+0	495.9E+0
Water scarcity	potential	m ³ eq.	9.4E+0	139.4E-3	945.0E-3	10.5E+0
		Use o	f resource	es		
Primary energy resources –	Use as energy carrier	MJ, net calorific value	49.6E+0	377.0E-3	9.7E+0	59.7E+0
Renewable	Used as raw materials	MJ, net calorific value	000.0E+0	000.0E+0	2.7E+0	2.7E+0
	TOTAL	MJ, net calorific value	49.6E+0	377.0E-3	12.4E+0	62.4E+0
Primary energy resources –	Use as energy carrier	MJ, net calorific value	486.4E+0	20.1E+0	36.3E+0	542.8E+0

Non- renewable	Used as raw materials	MJ, net calorific value	4.1E+0	000.0E+0	6.4E+0	10.5E+0
	TOTAL	MJ, net calorific value	490.4E+0	20.1E+0	42.7E+0	553.3E+0
Secondary ma	aterial	kg	000.0E+0	000.0E+0	000.0E+0	000.0E+0
Renewable se	condary fuels	MJ, net calorific value	000.0E+0	000.0E+0	000.0E+0	000.0E+0
Non-renewabl fuels	e secondary	MJ, net calorific value	000.0E+0	000.0E+0	000.0E+0	000.0E+0
Net use of free	sh water	m ³	225.1E-3	3.3E-3	9.0E-3	237.4E-3
	'	Waste pr	oduction	flows		
Hazardous wa	iste disposed	kg	-	-	35.1E-3	35.1E-3
Non-hazardou disposed	is waste	kg	-	-	558.9E-3	558.9E-3
Radioactive w	aste disposed	kg	-	-	-	-
	Output flows					
Components	for reuse	kg	-	-	000.0E+0	000.0E+0
Material for re	cycling	kg	-	-	496.1E-3	496.1E-3
Materials for e	energy recovery	kg	-	-	000.0E+0	000.0E+0
Exported ener	rgy, electricity	MJ	-	-	000.0E+0	000.0E+0
Exported ener	rgy, thermal	MJ	-	-	000.0E+0	000.0E+0

Environmental performance for FR Composite Panels

Potential I	Potential Environmental Impact					
		шит		10	10	TOTAL
PARAMETER	C	UNIT	A 1	A2	А3	TOTAL A1-A3
Global warming potential	Fossil	kg CO ₂ eq.	50.1E+0	496.5E-3	2.4E+0	53.0E+0
(GWP)	Biogenic	kg CO ₂ eq.	524.0E-3	4.2E-3	69.1E-3	597.4E-3
	Land use and land transformation	kg CO ₂ eq.	116.1E-3	137.6E-6	685.0E-6	116.9E-3
	TOTAL	kg CO ₂ eq.	50.7E+0	500.8E-3	2.5E+0	53.8E+0
Acidification	potential (AP)	kg SO ₂ eq.	296.0E-3	1.8E-3	10.0E-3	307.8E-3
Ozone Deple (ODP)	tion Potential	kg CFC 11 eq.	2.1E-6	94.0E-9	127.5E-9	2.4E-6
Eutrophication (EP)	on potential	kg PO ₄ 3- eq.	67.5E-3	397.6E-6	3.8E-3	71.7E-3
Formation po tropospheric	otential of ozone (POCP)	kg C₂H₄ eq.	7.1E-3	-85.6E-6	118.8E-6	7.2E-3
Abiotic deple Elements	etion potential –	kg Sb eq.	306.3E-6	794.2E-9	23.5E-6	330.7E-6
Abiotic deple Fossil resou	etion potential – rces	MJ, net calorific value	501.4E+0	7.6E+0	35.3E+0	544.3E+0
Water scarci	ty potential	m³ eq.	9.5E+0	55.7E-3	873.2E-3	10.4E+0
	Use of Resources					
Primary energy resources –	Use as energy carrier	MJ, net calorific value	48.0E+0	114.8E-3	7.9E+0	56.1E+0
Renewable	Used as raw materials	MJ, net calorific value	000.0E+0	000.0E+0	2.5E+0	2.5E+0
	TOTAL	MJ, net calorific value	48.0E+0	114.8E-3	10.5E+0	58.6E+0

Primary energy	Use as energy carrier	MJ, net calorific	443.2E+0	8.2E+0	36.1E+0	487.6E+0
resources -	Carrier	value				
Non- renewable	Used as raw materials	MJ, net calorific value	121.3E+0	000.0E+0	6.0E+0	127.3E+0
	TOTAL	MJ, net calorific value	564.5E+0	8.2E+0	42.1E+0	614.8E+0
Secondary m		kg	000.0E+0	000.0E+0	000.0E+0	000.0E+0
	econdary fuels	MJ, net calorific value	000.0E+0	000.0E+0	000.0E+0	000.0E+0
fuels	ole secondary	MJ, net calorific value	000.0E+0	000.0E+0	000.0E+0	000.0E+0
Net use of fre		m ³	208.2E-3	1.7E-3	9.1E-3	219.0E-3
	V	laste Pr	oduction I	Flows		
Hazardous w	aste disposed	kg	-	-	32.9E-3	32.9E-3
Non-hazardo disposed	us waste	kg	-	-	523.3E-3	523.3E-3
Radioactive	waste disposed	kg	-	-	-	-
		Out	put Flows			
Components	for reuse	kg	-	-	000.0E+0	000.0E+0
Material for r	ecycling	kg	-	-	464.5E-3	464.5E-3
Materials for recovery	energy	kg	-	-	000.0E+0	000.0E+0
Exported end	ergy, electricity	MJ	-	-	000.0E+0	000.0E+0
Exported end	ergy, thermal	MJ	-	-	000.0E+0	000.0E+0

Environmental performance for PE Composite Panels

Potential Environmental Impacts						
PARAMETER	<u>, </u>	UNIT	A 1	A2	A3	TOTAL
PARAMETER	•	UNII	AI	AZ	AS	A1-A3
Global warming potential	Fossil	kg CO ₂ eq.	42.4E+0	283.1E-3	2.1E+0	44.8E+0
(GWP)	Biogenic	kg CO ₂ eq.	647.9E-3	2.3E-3	60.7E-3	710.9E-3
	Land use and land transformation	kg CO ₂ eq.	106.7E-3	79.1E-6	663.4E-6	107.4E-3
	TOTAL	kg CO ₂ eq.	43.1E+0	285.5E-3	2.2E+0	45.6E+0
Acidification	potential (AP)	kg SO ₂ eq.	248.7E-3	1.2E-3	8.3E-3	258.2E-3
Ozone Deple (ODP)	tion Potential	kg CFC 11 eq.	1.8E-6	53.3E-9	113.9E-9	2.0E-6
Eutrophication (EP)	Eutrophication potential (EP)		59.5E-3	248.9E-6	3.5E-3	63.2E-3
Formation po tropospheric	otential of ozone (POCP)	kg C₂H₄ eq.	6.2E-3	-59.3E-6	89.4E-6	6.2E-3
Abiotic deple Elements	etion potential –	kg Sb eq.	277.4E-6	428.6E-9	22.2E-6	300.0E-6
Abiotic deple Fossil resou	etion potential – rces	MJ, net calorific value	374.5E+0	4.3E+0	30.8E+0	409.6E+0
Water scarci	ty potential	m³ eq.	7.5E+0	31.6E-3	820.2E-3	8.3E+0
	Use of Resources					
Primary energy resources –	Use as energy carrier	MJ, net calorific value	42.8E+0	65.2E-3	8.6E+0	51.5E+0
Renewable	Used as raw materials	MJ, net calorific value	000.0E+0	000.0E+0	2.4E+0	2.4E+0
	TOTAL	MJ, net calorific value	42.8E+0	65.2E-3	11.0E+0	53.8E+0

Primary energy	Use as energy carrier	MJ, net calorific	376.7E+0	4.7E+0	31.2E+0	412.6E+0
resources – Non- renewable	Used as raw materials	value MJ, net calorific value	40.9E+0	000.0E+0	5.7E+0	46.6E+0
	TOTAL	MJ, net calorific value	417.6E+0	4.7E+0	36.9E+0	459.2E+0
Secondary m	naterial	kg	000.0E+0	000.0E+0	000.0E+0	000.0E+0
Renewable s	econdary fuels	MJ, net calorific value	000.0E+0	000.0E+0	000.0E+0	000.0E+0
Non-renewak fuels	ole secondary	MJ, net calorific value	000.0E+0	000.0E+0	000.0E+0	000.0E+0
Net use of fre	esh water	m ³	179.4E-3	930.6E-6	7.9E-3	188.2E-3
	V	aste Pro	oduction l	Flows		
Hazardous w	aste disposed	kg	-	-	29.7E-3	29.7E-3
Non-hazardo disposed	us waste	kg	-	-	472.1E-3	472.1E-3
Radioactive	waste disposed	kg	-	-	-	-
		Out	put Flows			
Components	for reuse	kg	•	•	000.0E+0	000.0E+0
Material for r	ecycling	kg	-	-	419.1E-3	419.1E-3
Materials for recovery	energy	kg	-	-	000.0E+0	000.0E+0
Exported en	ergy, electricity	MJ	-	-	000.0E+0	000.0E+0
Exported end	ergy, thermal	MJ	-	-	000.0E+0	000.0E+0

Programme-related information and verification

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

Programme:	EPD Turkey, a fully aligned regional programme EPD Turkey, www.epdturkey.org EPD Turkey: SÜRATAM – Turkish Centre for Sustainable Production Research & Design Nef 09 B Blok No:7/15, 34415 Kağıthane / İstanbul, Turkey www.suratam.org	The International EPD® System EPD International AB Box 210 60 SE-100 31 Stockholm Sweden www.environdec.com info@environdec.com				
EPD registration number:	S-P-01261					
Published:	2018-11-08					
Valid until:	2023-11-07					
Product Category Rules:	PCR 2012:01. Construction Products and Services. 2.2					
Product group classification:	UN CPC 41534					
Reference year for data:	2017					
Geographical scope:	Global					

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)					
Product category rules (PCR): PCR 2012:01. Construction Products and Construction Services. 2.2,					
PCR review was conducted by: Martin Erlandsson, IVL Swedish Environmental Research Institute					
Independent third-party verification of the declaration and data, according to ISO 14025:2006:					
☐ EPD process certification ☒ EPD verification					
Third party verifier: <name, and="" of="" organisation="" party="" signature="" the="" third="" verifier=""></name,>					
In case of accredited certification bodies: Accredited by: <name accreditation="" and="" applicable="" body="" number,="" of="" the="" where="">.</name>					
In case of recognised individual verifiers: Approved by: The International EPD® System					
Procedure for follow-up of data during EPD validity involves third party verifier:					
☐ Yes ⊠ No					

References

General Programme Instructions of the International EPD® System. Version 3.0.

/EN 13501-1/ Fire classification of construction products and building elements – Part 1: Classification using test data from reaction to fire tests

/ISO 8301/ Thermal insulation – Determination of steady – State thermal resistance and related properties – Heat flow meter apparatus.

/EN 15804/ EN 15804:2012+A1:2013, Sustainability of construction works - Environmental Product Declarations — Core rules for the product category of construction products

/ISO 14025/ DIN EN ISO 14025:2009-11: Environmental labels and declarations - Type III environmental declarations — Principles and procedures

/ISO 14040 and ISO 14044/ DIN EN ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework (ISO 14040:2006) and Requirements and guidelines (ISO 14044:2006)

/Construction Products and Construction Services PCR 2012:01 v.2.2/ Prepared by IVL Swedish Environmental Research Institute, Swedish Environmental Protection Agency, SP Trä, Swedish Wood Preservation Institute, Swedisol, SCDA, Svenskt Limträ AB, SSAB, The International EPD System, 2012:01

/The International EPD® System/ The International EPD® System is a programme for type III environmental declarations, maintaining a system to verify and register EPD®s as well as keeping a library of EPD®s and PCRs in accordance with ISO 14025.www.environdec.com

/Ecoinvent / Ecoinvent Centre, www.Eco-invent.org

/TLCID/ Turkish Life Cycle Inventory Database, Turkish Centre for Sustainable Production Research and Design (SÜRATAM), www.suratam.org

/SimaPro/ SimaPro LCA Package, Pré Consultants, the Netherlands, <u>www.presustainability.com</u>

Contact information:

Programme:	EPD registered through fully aligned regional programme: EPD Turkey: www.epdturkey.org TURKEY ENVIRONMENTAL PRODUCT DECLARATIONS	The International EPD® System www.environdec.com EPD®
Programme operator:	EPD Turkey: SÜRATAM – Turkish Centre for Sustainable Production Research & Design Nef 09 B Blok No:7/15, 34415 Kağıthane / Istanbul, TURKEY www.suratam.org	EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden info@environdec.com
Owner of the declaration:	ALBOND ALÜMİNYUM SANAYİ VE TİCARET ANONİM ŞİRKETİ Ayazağa Mah. Mimar Sinan Sk. D NO: 21 D İÇ KAPI NO: 15 SARIYER / İSTANBUL, TURKEY	Contact: Esin Özgen Gezersoy, Quality Assurance Chief Phone: +90 (282) 661 10 10 E-mail: esin.ozgen@albond.com.tr www.albond.com.tr info@albond.com.tr
LCA author:	Sustainability Consulting Lalegül Sok. No:7/18 34415 4. Levent – Istanbul, Turkey +90 212 281 13 33	United Kingdom Office 4 Clear Water Place Oxford OX2 7NL +44 7557 351 476 www.metsims.com info@metsims.com
3 rd party verifier:	LCA studio	LCA Studio Vladimír Kočí, PhD Šárecká 5,16000 Prague 6 - Czech Republic www.lcastudio.cz

